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This paper demonstrates that, for a given crystalline solid, the first pressure derivatives of polycrystalline 
elastic moduli can be predicted either from the corresponding derivatives of anisotropic single-crystal 
elastic constants or from their single-crystal third-order elastic constants. Theoretical relations for the 
isotropic polycrystalline acoustic data in terms of their single-crystal acoustic data are presented here for 
cubic, hexagonal, trigonal, and tetragonal crystals; these have been successfully applied for four cubic 
solids (AI, Cu, a-Fe, and MgO) and one hexagonal metal (Mg). It is shown for these solids that the cal
culated isotropic acoustic data agree essentially with experimental acoustic data determined on their 
polycrystalline specimens. thus establishing the validity of the theoretical relations. It is concluded that 
the acoustic data measured on f1l11y de1lse polycrystaUine specimens may be as useful as the single-crystal 
acoustic data in the study of the equation of state of solids, for example. And further, when anisotropic 
single-crystal acoustic data are available, these can be converted into isotropic polycrystalline acoustic data 
so that in their applications, the use of the acoustic data becomes more practical. 

1. INTRODUCTION 

The first pressure derivatives of the second-order 
elastic constants of a solid provide an important source 
of information for studies of lattice dynamics and of 
the general equation of state of the solid. However, 
measurements of these quantities are frequently limited 
by the unavailability of single-crystal specimens large 
enough for acoustic measurements to be made upon 
them. On the other hand, the fabrication of fully dense 
polycrystalline specimens has been possible in recent 
years for a number of materials, including metals, 
oxides, fluorides, sulfides (like ,B-ZnS), selenides (like 
ZnSe) , and tellurides (like CdTe) as well as a large 
number of intermetallic compounds (like ,B-SiC and 
TiB2)' Acoustic measurements on polycrystalline speci
mens also are simpler in principle and of more practical 
use than those on single-crystal specimens, because 
the acoustic properties of poly crystals are isotropic, 
whereas those of single-crystals are anisotropic. Further
more, for a polycrystalline specimen, measurements of 
only two sound velocities (one longitudinal and one 
transverse) as a function of hydrostatic pressure suffice 
to give the complete description of the second-order 
deformation behavior of the solid under hydrostatic 
pressure_ The question then arises whether the acoustic 
data (e.g., the second-order elastic constants and their 
pressure derivatives) determined on polycrystalline 
specimens are equivalent to the corresponding quanti
ties measured on single crystals. The primary purpose 
of this paper is to examine this question by computing, 
on the basis of a theoretical scheme,! polycrystalline 

acoustic ' data from the corresponding single-crystal 
data, and comparing the result with experimentally 
determined values. 

In the section immediately' following, theoretical re
lations are presented for the first pressure derivatives 
of polycrystalline elastic moduli in terms of their single
crystal elastic constants and pressure derivatives for 
cubic, hexagonal, trigonal, and tetragonal crystals. 
Then, in Sec. 3, Sec. 2 is applied for four cubic solids 
and one hexagonal metal, since for these solids both 
the single-crystal and polycrystalline acoustic data are 
found in the literature. And, then in Sec. 4, the present 
work with cubic crystals is explicitly discussed Jor 
three thermodynamic boundary conditions (adiabatic, 
isothermal, and mixed). In Sec. 5, a procedure to calcu
late polycrystalline acoustic data from the single-crystal 
third-order elastic constants is presented for cubic 
crystals. And, finally in Sec. 6, the present work is 
discussed and its implications and possible appli'cations 
in solid-state studies are indicated in brief. 

2. RELATIONSHIP BETWEEN THE FIRST 
PRESSURE DERIVATIVES OF THE SINGLE
CRYSTAL ELASTIC CONSTANTS AND THOSE OF 

POLYCRYSTALLINE ELASTIC MODULI 

The first pressure derivatives of polycrystalline elastic 
moduli in terms of the corresponding derivatives of the 
single-crystal elastic constants can be given as: 

For the bulk modulus K, 

dK-/dp=HdKv/dp+dKR/dP), (1) 

• Present address: Department of Geology and Geophysics, and for the· shear mo~ulus G, 
M.I.T., Cambridge, Mass. 

1 (a) D. H. Chung, Proc. 4th Technical Society of Engineering dG./dp =! (dGv/dp+dGR/dp) , 
Science, paper No. 5 (1966); (b) R. Hill, Proc. Phys. Soc. 
(London) 65,349 (1952). It is noted that Rei. la discusses the where 

(2) 

validity of the Voigt-Reuss-Hill approximation and its relation dKv/dp =jl (dcu./dp) 
to other theoretical schemes of averaging the single-crystal elastic ~ 
constants for a polycrystalline behavior. Other theoretical schemes and 
referred here include a self-consistent method of Kroner (1958) 
and a variational method due to Hashin and Shtrikman (1962). dKR/dP=h(dc"./dp) , 

(3a) 

(3b) 
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and 

( 4a) 

and 
(4b) 

where /1 through 1. are some linear combinations of the 

single-crystal elastic constants and their pressure de
rivatives, and they depend upon the crystal symmetry. 
The rigorous expressions for Eqs. (3) and (4) depend, 
therefore, on the symmetry of crystal in question; in 
the following, the expressions for cubic, hexagonal, 
trigonal, and tetragonal crystals are presented under 
each heading. 

(a) Cubic Crystals: 

and 

where 

and 

(b) 11 exagonal Crystals: 

and 

where 

where 

and 

and 

dKv/dp=dKR/dp=dK*/dp=dcIJdP-i(dCo/dp) , 

dGv/ dp = H dCo/ dp) +H dc«/ dp), 

dGR/dp=t(GR/Co)2(dCo/dp) +HGR/c«) 2 (dc«/dp) , 

Co= (Cll-C12) 

GR = (SCoc«) / (3Co+ 4C4.) . 

dKv/clP = j[2 (dcu/dp+dc12/dP ) +dC33/dP+4(clc/dP)], 

dKR/dp= Cb(KR/Cc) 2 (dCjclp) - (KR2/C.) (dCb/dp) , 

KR=Cc/Cb, 

Cb = Cll+C12+ 2C33- 4C13 

Cc =Caa(Cn+C12) - 2C132. 

dGv/dp= (1/30) [dCb/dp+ 12 (dc«/dp) + 12 (dcoo/dp) ], 

r 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

dGR/dp = ![6K v( GR/Cc)2(dCc/dp) -6( GR2/Cc) (dK v/ dp) +2( GR/CO ) 2 (dCo/dp ) 

where 

and 

where 

and 

(c) Trigonal Crystals: 

and 

+2( GR/ c«) 2 (dc«/dp) + (GR/ eu,)2(dcoo/dp)], (12) 

dKv/dp=Eq. (8), 

dKR/dp=Eq. (9), 

dGv/dp=Eq. (11), 

(13) 

(14) 

(15) 

(16) 

(17) 

dGR/ dp =i( GR/Ch ) 2[ (Co+ 2C4.) dC~/ dp]- i( GR2/Ch ) [dCo/ dp+ 2 (dc«/ dp)] 

+~[KV(GR/Cc)2(dCc/dP) - (GR/Cc) (dKv/dp)], (18) 
where 

(19) 

where 

and 

'>"' - -T. 

--= - -
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and 
Ch = Cac«- 2C142

• 

Kv is given hy Eq. (13) and its first pressure derivative is given by Eq. (8) and 

dC,,/ dp =Ca( dc«/ dp) +C44( dCa/ dp) - 4C14( dC14/ dp) . 

(d) Tetragonal Crystals: 

dKv/dp=Eq. (8), (20) 

and 
dKn/dp=Eq. (9). (21) 

(22) dGv/dp =-J-rr[3(dCa/rlp) + 12 (dc44/dp ) +6(dc6tJ/dp) +dCb/dp], 
where 

and 

dCa/ dp = dCll/ dp- dC12/ dP. 

dGn/dp =t[2( Gn/Ca )2(dCa/dp) - 6( Gn/Cc)2(dK v/dp) +6Kv( Gn/Cc) 2 (dCc/dp ) , 

where 
Gn=C,/Cj 

+2(Gn/c«) 2 (dc44/dp) + (Gn/C6tJ) 2 (dcM/dP) ], (23) 

(24) 
where 

and 
Cj = [2CcC44C6tJ+6K VCaC«C66+CaCcC«+ 2CaCcc6tJ]. 

K v and its first pressure derivative are given by Eqs. (13) and (8), respectively, and 

dCe! dp = (Cll+CI2) (dc3a/dp) + Caa(dcu/ dp+dC12/ dp) - 4C13(dc13/ dP) . 

3. COMPARISON OF THE PREDICTED ISOTROPIC 
ACOUSTIC DATA WITH EXPERIMENTAL 

POLY CRYSTALLINE ACOUSTIC DATA 

Having presented theoretical expressions for isotropic 
(polycrystalline) acoustic data in terms of anisotropic 
(single-crystal) acoustic data, we proceed in this section 
to compare the computed values of the isotropic acoustic 
data with experimental polycrystalline acoustic data. 
Comparison is made here for crystalline AI, Cu, a-Fe, 
MgO, and Mg, since for these solids, results on ultra
sonic-pressure experiments are reported in the literature 
individually for both single-crystal and polycrystalline 
materials. 

3.1. Cubic Crystals 

Table I lists values of the first pressure derivatives 
of single-crystal elastic constants for AI,2.3 CU,2.4.6 a-Fe,6 
and MgO.7 The values listed under (ac".'/aph are the ' 
experimental quantities resulting from the usual ultra
sonic-pressure experiments. Other quantities entered 
are computed results according to therm~dynamic re-

• D. Lazarus, Phys. Rev. 76, 545 (1949). . 
3 R. E. Schmunk and C. S. Smith, J. Phys. Chem. Solids 9', 

100 (1959). 
• W. B. Daneils and C. S. Smith, Phys. Rev. 111, 713 (19S8). 
6 Y. Hiki and A. V. Graoato, Phys. Rev. 144, 411 (1966). 
I C. A. Rotter and C. S. Smith, J . Phys. Chem. Solids 27, 267 

(1966) . 
7 E. H. Bogardus, J. Appl. Phys.36, 2504 (1965). 

. lations to be ,presented in Sec. 4, and they are discussed 
there. Using the values of c".' and (ac".'/aph, the 
isotropic values of (aB*'/aph and (aG*/aph are 
computed according to the relations given in the pre
ceding section, and these are compared with experi
mental polycrystalline acoustic data in Table n. Here 
the quantity (aL*'/ap)r is the isothermal pressure 
derivative of adiabatic longitudinal modulus calculated 
from (aB*'/ap)T and (aG*/ap)r in the usual way 
(i.e., L*=K*+4G*/3). The polycrystalline acoustic 
data entered in Table n are those compiled by Birch8 

and also by Voronov and Vereshchagin.9 Note that for 
every solid, the values of the pressure derivatives for 
the bulk, shear, . and longitudinal moduli calculated 
from the single-crystal acoustic data are in essential 

, agreement with the corresponding values measured on 
actual polycrystalline specimens. The observed dis
crepancies between the predicted and measured values 
for the pressure derivatives of isotropic elastic moduli 
are always within the scaller in both the single-crystal 
and polycrystalline acoustic data themselves. The kind 
of agreement seen here lends support to the validity of 
the theoretical relations presented in Sec. 2. 

8 F. Birch, Halldbook of Physical COlls/ollls S. P. Clark, Jr .. 
Ed. (Geological Society of America, Inc., New York, 1966) , 
Memoir No. 97, p. 124. 

• F. F. Voronov and L. F. Vereshchagin, Fiz. Metal Metalloved 
11, 443 (1961). 
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3.2. Hexagonal Crystals 

In the literature, experimental acoustic data on both 
single-crystal and polycrystalline materials of Mg are 
reported, The single-crystal acoustic data are due to 
Schmunk and Smith3 ; for polycrystalline data, wc use 
the acoustic data reported by Voronov and Veresh
chagin,9 Table III summarizes the single-crystal acoustic 
data, In Table 1 V, we compare the isot ropic <tcoust ic 
clata resulting from the prest'nt calculalions wilh the 
(0 I'I'CSpO 11 d illg VII hll'S I1l('asul'('(1 Oil pol yl'I'yst nlli Ill' speci. 
mens. The agreel11t'nt is good as may he Sl'ell fl'011l lite 
table. 

4. THERMODYNAMIC RELATIONS FOR THE 
ADIABATIC AND ISOTHERMAL 

ACOUSTIC DATA 

Typical ultrasonic experiments, in which pressure is 
a variable, involve measurements of the behavior of an 
elastic wave propagating in a statically stressed crystal. 
Thermodynamically, the ultrasonic velocity measure
ments in the crystal (specimen) involve an adiabatic 
process; on the other hand, the application of pressure 
to the specimen is an irothem131 proces..<:... T hus, the 
acoustic data resulting from su ch exp.:nmems are 
neither thermodynamically "pure" adiabatic nor ther
modynamically "pure" isothermal quantities, but are 
"mixed" quantities. How, then, can one calculate 
(a) isothermal pressure derivatives of the isothermal 
elastic moduli and (b) adiabatic pressure derivatives 
of the adiabatic elastic moduli from the experimentally 
determined isothermal pressure derivatives of the adi
abatic elastic moduli? In the following discussion, the 
thermodynamic relations applicable for cubic crystals 
are presented for (a) and (b) in terms of the measured 
quantities resulting from the usual ultrasonic-pressure 
experiments. 

At the absence of pressure, it is well-known that the 
relationships between the adiabatic and isothermal 
values of the second-order elastic constants are given 
by the following: 

and 
(26) 

Where {3 is the coefficient of volume expansion, p is 
the density, T is the temperature, and "la IS the 
Grtineisen constant given by 

"la = {3K'/pCp ={3VKT /C.={3VK'/Cp' (27) 

The superscripts sand T denote the adiabatic and the 
isothermal values, respectively. Cp and C. are the 
specific heats at constant pressure and that at constant 
volume, respectively, and the difference between them 
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TABLE n. Comparison of predicted and experimental isotropic pressure derivatives of polycrystalline elastic 
moduli for AI, Cu, a-Fe, and MgO (~3000K). 

Isothermal pressure derivatives of adiabatic moduli 
Material and 
reference- (iJK-/iJP)T (fJC-/iJph (fJL-/aph 

Al Calculated (49Ll)- 3.95 2.71 7.56 
Calculated (5951) 5.22 2.01 7.90 
Measured (61VI)b 4: 75 2.00 \ 7.42 
Measured (6QBI)c 3.9 2.2 6.8 

Cu Calculated (49LI) 4.44 0 .86(?) 5.59(?) 
Calculated (58Dl) 5.59 1.36 7.40 
Calculated (66HI) '" 5.28 1.45 7.21 
Measured (66BI)c 4.9 1.4 , 6.8 

a-Fe Calculated (66RI) 5.96 1.91 8.50 
Measured (61V1)b 5 . 13 2. 16 8.01 
Measured (66BI)c 4.0 1.9 6.5 

MgO Calculated (65BI) 4.14 2.47 7.43 
Measured (66BI)c 3.9 2.6 7.4 

• See Table I for the complete reference. C 66BI: F. Birch. Handbook of Physical Cons/ants. S. P. Clark. Jr .. Ed 
b 61V1: F. F. Voronov and L. F. Vereshchagin. Fiz. Metal Metalloved. (Geological Society of America. 1966). Memoir 97. p. 124. 

11,443 (1961). 

IS 

(28) 

It may be seen from Eqs. (25) and (28) that the two 
bulk moduli and the two specific heats have the same 
ratio: 

Therefore, 

(30) 

. and this is a convenient relation to be used in the 
following. 

Differentiating Eq. (30), with respect to pressure, 
yields 

(aKT /aph= (aK'japh+[(A-l)/A][I- (2/fJKT) (aKT/aT)p-2(aK'/aph] 

+[(A -1) / A]Z[(aK'/aph- (l/fJZ) (ap/aT)p-l]. (31) 

The quantity (aKTjaT)p can be obtained from the experimental (aK'/aT)p by differentiating Eq. (30), with 
respect to temperature. Thus 

(32) 
where 

(aA/aT)p=A[(A -1) / A]{ I/T+ (l/P) (afJ/aT)p+ (1/ K') (aK'/aT)p 

+fJ[1+ (1jfJ2) (a{3jaT)p]- (ljCp) (aCpjaT) pI. (33) 

Equation (31) is the desired relation from which one can calculate the isothermal pressure derivative of the 
isothermal bulk modulus from the experimentally measured (aK'japh, the isothermal pressure derivative of the 
adiabatic bulk modulus. Equation (31) was given first by Overton.1o Equation (32) is the relation through which 
one can convert the isothermal temperature derivative of the isothermal bulk modulus from the experimental 
(aK'jaT) 1', the isothermal temperature derivative of the adiabatic bulk modulus. 

It can be shown that, although Eqs. (25) and (26) are referred to the zero-pressure condition, these relations 
hold also for all the other pressures. Differentiating Eq. (25), with respect to pressure, yields 

(aCnT /~ph- (aCn'/ap)T= (aCnT /aph- (aclz'/aph= (aKT/aph- (aK'/Oph=B, 

where an expression for B may be found from Eq. (31): 

(34) 

B=[(A -1)jA][I- (2/fJKT) (aKTjaT)p-2(aK'/aph]+[(A-l)/ A][(aK'japh- (1/(32) (a{3/aT)p-l]. (35) 
10 W. C. OvertoD. Jr., J . Chem. Phys. 37,116 (1962). 
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Similarly, ditTcrentiating Eq. (26), with respect to 
pressure, yields 

(ac«T /ap)r= (ac«'/aph= (aC44/ap)r. (36) 

Equations (34) and (36) are the desired expressions 
by which one finds the isothermal pressure derivatives 
of the isothermal elastic constants In terms of the 
experimentally measured (acl'.'/aph, the isothermal 
pressure derivatives of the adiabatic elastic constants. 

The adiabatic pressure derivatives of the adiabatic 
elastic constants can also be calculated from the experi
mentally measured isothermal pressure derivatives of 
the adiabatic elastic constants. Using the differential 
rule 

(a/ap),= (a/aph+ (a/aT)"(aT/ap),, (37) 

where 

(aT/ap), = TV{3/Cp = T'Ya/K'= T'Yax'=C, (38) 

we find the relationll 

(aCI'.'/ap), =C(acl'.'/aT) 1'+ (acl'.'/ap)T. (39) 

Thus, for cubic crystals, Eq. (39) results in the following 
relations: 

(aCu'/ap), =C(acu'/aT),,+ (aCll'/ap )T, (40) 

(acu'/ap), =C( aC12'/aT),,+ (acu'/ap h, (41) 

and 

(aC«'/a p), =C( aC44'/aT),,+ (aC44'/ap hi (42) 

and, for the case with the bulk modulus, 

(aK'/ap). =C(aK'/aT) 1'+ (aK'/aph. (43) 

The thermodynamic relations given thus far are for 
the single-crystal elastic constants and their pressure 
derivatives. In terms of these relations, the correspond
ing thermodynamic relations for the polycrystalline 
values can be obtained. 

The pressure derivative of the polycrystalline longi
tudinal modulus can be given in terms of Eqs. (1) 
and (2) as 

(aL*/ap)T= (aK*/ap)T+t(aC*/aph, (44) 

or in terms of the single-crystal elastic constants and 

TABLE Ill. Single-crystal elastic constants and their pres.~ure 
derivatives .of hexagonal Mg ( ..... 3000 K)." 

Index for 
elastic constants 

c./(XI011 

dyn/cm2) 

(oc,"/OP)T 

11 33 44 66 12 13 

5.974 6.170 1.639 1.680 2.614 2.167 

6.11 7.22 1.58 1.36 3.39 2.54 

• R. E. Schmunk and C. S. Smith. J. Phys. Chem. Solids 9, 100 (1959). 

11 G. R. Barsch, Phys. Status Solidi 19, 129 (1967). 
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their pressure derivatives as 

(aL-/aph= (acl1/rJph- (8/15)[1- (Cn/Ca)2] 

X (aCo;ap)T+~[1+ (Cn/c«)2] (ac«/aph, (44a) 

where Co and Cn have been defined earlier in Sec. 2. 
The pressure derivative of the polycrystalline shear 

modulus can be found by analogy to Eq. (36) as 

(ac*'/a p h= (ac*T jap) T= (ac*/ap h. (45) 

or in terms of the single-crystal elastic constants and 
their pressure derivatives as 

(ac* /ap) T = t[t+ ~ (Cn/Ca) 2J (aCa/ap) T 

+ 13
0 [1 + (Cn/ c«)2J( ac«/ap h. (45a) 

Specializing L* to L*' and K* to Ko, in Eq. (44), 
the isothermal pressure derivative of the adiabatic 
longitudinal modulus is found as 

(aL ·'/a p h = (aK·'/a p h+t( ac·/aph-. (46) 

These quantities (ac*/aph and (aL*'japh given by 
Eqs. (45) and (46), respectively, are the useful quan
tities for a comparison of the single-crystal acoustic 
data with polycrystalline acoustic data, since the corre
sponding quantities can be readily determined from 
ultrasonic-pressure experiments with polycrystalline 
specimens. 

When we speciali~c L* to UT and K* to K*T in 
Eq. (44), we lind that the isothermal pressure de
rivat.ive of the isothermal longitudinal modulus is 

(aL·7/ aph= (aK*T japh+t(aC*/aph, (47) 

where the quantity (aK*T/aph has been specified by 
Eqs. (5) and (31) and the quantity (ac*japh by 
Eq. (45a). 

By analogy to Eqs. (40) and (42), we obtain the 
adiabatic pressure derivatives pi the adiabatic longi-
tudinal and shear moduli as . 

I 

and 

(ac*'/ ap), =C(aC*'/ aT)p+ (ac·'/aph, (49) 

respectively. The parameter C has been given earlier 
by Eq. (38), and the quantities (aL*'/aT)p and 
(aC*/ aT)p can be found from experimental data on 
the temperature variation of c,,:. 

It is important to note that, although the isothermal / 
pressure derivative of the adiabatic shear modulus is 
exactly the same as that of the isothermal shear modu
lus, the adiabatic pressure derivative of the adiabatic 
shear modulus is quite different from the isothermal 
pressure derivative of the adiabatic shear modulus. 

The calculated values of the single-crystal acoustic 
data corresponding to (a) isothermal pressure deriva
tives of the isothermal elastic constants and (b) adi
abatic pressure derivatives of the adiabatic elastic 
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constants have been already tabulated in Table I. 
The elastic and thermal properties of each solid used 
in the construction of Table I are sununarized in Tables 
V and VI. The computed values of polycrystalline 
acoustic data corresponding to three thermodynamic 
boundary conditions are illustrated in Table VII with 
crystalline MgO as an example. In Table VII, also 
entered are two other values of pressure derivative of 
the bulk modulus; one is a theoretical value based on 
the Dugdale-MacDonald relation,12 and the other is 
derived from the Murnaghan equation of state13 by a 

curve-fitting procedure using experimental com pression 
data. 14- 17 It is seen here that these values compare very 
well with the corresponding quantiti es resulting from 
the ultrasonic-pressure experiments made on both the 
single-crystal and polycrystalline materials . 

5. CALCULATION OF THE POLYCRYSTALLINE 
ACOUSTIC DATA FROM THE SINGLE-CRYSTAL 

THIRD-ORDER ELASTIC CONSTANTS 

The pressure-dependent second-order elastic con
stants can be written in a formll .18 

(50) 
where 

Dijkl=OijOkl-O,zOjk-Oi~jl' 

V denotes the volume of crystal at a reference state characterized by the hydrostatic pressure p, and 1i is the 
strain tensor corresponding to an arbitrarily deformed state characterized by that pressure p. VO is defined by the 
rela tion (V /VO) =1,3, where A is a factor given 'by the coordinates of a material point in two reference states ai 
and aio according to (a;j a,O) .;, A. The Lagrangian strain tensors19 corresponding to these two reference states T/;, 

and 'T/l are then related by 

where E=t(A2-1). Keeping in mind the relations (a/ap)"T=-(V/K"T)(a/aV)"T and (aA/aV)o=(aE/aV )o = 
1/3Vo, one finds by differentiating Eq, (50) that ' 

(ac' ,jkl/ ap) S = - (l/3K') ( (l/VO) [a2U (VO, S, 1i) / a'T/,ja'T/kl]V',S-const .. n-o 

+(1/V.)[a3U(VO, S,1i)/a'T/".(J'T/kla'T/m .. ]V',S_ono,.,n-o}+Dijkl, (51) 
and 

(aC'ijkl/a ph= - (1/3KT)( (l/VO) [a2U(VO, S, 1i) /a7liJ.(J'T/u]V·,S_ono,.,n-o 

+ (l/VO) { (a/a'T/mn) [a2U (VO, S, 1i) /a'T/;ja'T/kl]V·,S-con8t.,n-o} V·,S-const. ,n-o)+ Dijkl. (52 ) 

Note that the first terms in Eqs.· (51) and (52) are by definition the zero-pressure second-order elastic constants. 
The second term in Eq. (51) is the zero-pressure third-o~der elastic constants, whereas that in Eq. (52) is by 
definition thermodynamically "mixed" third-order elastic constants at p=O. Hence, from these, we obtain the 
familiar expressionsll 

and 

where 

Similarly, we find 

(ac',;H/aph= - [(C'i;kl+Cijklmm) /3KT]+Dijkl, 

C;jklmm = (1/ A) {C' ;jklmm+ T'Ya[ - fjC' ,jkl+3 (aC' ,jkl/ aT) p]} • 

(aCTijkJap h= - [( CTijkl+CT,jk;mm) /3KT]+ D'jkl . 

(53) 

(54) 

(55) 

(56) 

The quantities specified by Eq. (55) are certain linear combinations of the third-order elastic constants C;jkl •• n, 
and they are the primary experimental quantities when ultrasonic-pressure experiments are made with hydro
static pressure. Thus, for cubic crystals, C;jklmm reduces to the following: 

Cr=Cllllii=Cl1l+ 2Cll2 = - [3KT(aCll'/aph+3KT +cu'], 

Cll = Cl12'W = 2C1I2+C123 = - [3KT(aC12'/ap )T- 3KT + C12'] , 

CIII =C1212ii=C144+2cl66= - [3KT(ac«/ap)T+3KT +C«], 

12 J. S. Dugdale and D. K. C. MacDonald, Phys. Rev. 89, 832 (1953). 
13 F. D. Murnaghan, Proc. Am. Acad. Arts Sci. 30, 244 (1944). 
I'P. W. Bridgman, Proc. Am. Acad. Arts Sci. 67, 345 (1932) . 
" C. E. Weir, J. Res. Natl. Bur. Std. 56, 187 (1956). 
16 E. A. Perez..Albueme and H. G. Drickamer, J. Chem. 43, 1381 (1965), 

(57) 

(58) 

(59) 

17 R. G. McQueen and S. P. Marsh, to be published in J. Appl. Phys. See also p. 158 of Ref. 8. 
I@ G. Leibfried and W. Lugwig, Solid SiaJe Physics, F. Seitz and D. Tumbull, Eds. (Academic Press Inc" New York, 1961), Vol. 12. 
11 F. Birch, Phys. Rev. 71, 809 (1947). 

-- -- ---
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t 
TADJ.E VI. Acoustic and thermal data for crystalline AI, Cu, a-Fe, and MgO (,....,3OO0 K). 

-- --
-Cl -CII -CUI 

a (aa/aT)p Cp (acp/aT)p 
Material (XIQ-I'dyn/cml ) (XIO" deg1) ( X 1 ()3 deg- I ) (J/g·deg) (XI0' J /g ·deg- I ) 

Al (49L1) 22 .08 2.43 7.22 
AI (59S\) 19.48 7. 51 7.55 

Cu(49L1) 27 .04 13.60 9.05 
Cu(58Dl) 31 .09 18.00 14.14 
Cu(66Hl) 28.99 16.78 15.63 

a-Fe (66Rl) 44 . 18 21.96 19.17 

MgO(65Bl) 50.61 4.60 12.11 

aD. F. Gibbon. Phys. Rev. 112, 1.'6 (1958). 
b D. Bijl and H. Pullan. Physica 21, 285 (1955). 
• F. C. Nix and D. MacNair. Phys. Rev. 60, 597 (1941) . 
d J. G. Collins and G. K. White. Progress ;" Law-Temperature Physics 

C. J. Garter, Ed. (North Holland Publishing Co., Amsterdam, 1964), p.450 . 

Where c~.x are the "mixed" third-order elastic constants 
in Voigt's notation. Once the values of (ac~ .. /ap)r are 
found from these Eqs. (57) through (59), the calcu
lations of polycrystalline acoustic data follow the pro
cedure given in the previous sections. 

6. DISCUSSION AND IMPLICATIONS OF THE 
PRESENT WORK 

(a) The theoretical scheme of calculating the iso
tropic pressure derivatives of isotropic elastic moduli 
has been presented for cubic, hexagonal, trigonal, and 
tetragonal crystals. The scheme has been successfully 
tested for four cubic solids and also for one hexagonal 
metal of which both single-crystal and polycrystalline 
acoustic data are available. Although further testings 
of this scheme are needed, the writer believes that the 
validity of the present theoretical scheme is essentially 
established for cubic and hexagonal crystals; it is also 
believed that the scheme will probably apply for crystals 
of the lower symmetry. 

For further testing of the validity of the scheme, the 
followings may be suggested: It would be of particular 
interest to test this scheme for highly anisotropic cubic 
crystals like RbI and Li as well as moderately ani
sotropic crystals like KCI and LiF, so that one may 
find to what extent the scheme is applicable for crystals 
of high elastic anisotropy. Also interesting work would 
be to test the scheme for rather incompressible solids 
like a-AlzOa and TiC as well as for rather compressible 
materials like K and Na. The work of this kind would 
probably provide important information concerning the 
effects of grain boundaries on the polycrystalline 
acoustic data and on the compression behavior of 
aggregate solids like rocks. 

(b) The thermodynamic relations are presented (in 
terms of the measured isothermal pressure derivatives 
of adiabatic elastic moduli) for the isothermal pressure 
derivatives of the isothermal elastic moduli, and also 

2.26- 1.03 0 .903· 0.110 
2.26- 1.03 0.903- 0.110 

1.67b 1.04 0.386- 0 .099 
1.67b 1.04 0.386' 0.099 
1.67b 1.04 0 .386- 0.099 

1. 17· 1.02 0.447' 0.418 

1.05d 1. 75 0.916' 1.80 

• La"doU-Bamste;n Tables. 6th ed. (Springer-Verlag. Berlin 1961). Vol. 
2 (Pt. 4). 

fT. H. K. Barron. W. T. Berg. and J. A. Morrison. Proc. Roy. Soc. 
(London) A250, 70 (1959). 

for the adiabatic pressure derivatives of the adiabatic 
elastic moduli. The acoustic data obtained from the 
usual ultrasonic-pressure experiments are the isothermal 

. pressure derivatives of adiabatic elastic moduli; they 
are, for example, the practical quantities in the study 
of the propagation of seismic waves in the interior of 
the earth. The isothermal pressure derivatives of the f 
isothermal elastic moduli are the quantities usually 
resulting from theoretical calculations according to the 

. lattice theory of solids, and thus, they have important 
applications in testing of a theory with experimental 
values. In addition, these quantities have a direct 
application in the study of the compression in the earth 
interior. The adiabatic pressure derivatives of the adi
abatic elastic moduli arise directly from the shock-wave 
experiments, and the calculated values corresponding 
to this thermodynamic boundary condition are useful 
in the study of the actual shock-wave propagation. 

(c) In the following, two possible applications of the 
theoretical scheme are indicated: One is that the iso
tropic values dL*/dp and dC*/dp can be used in the 
calculation of the acoustic Grtineisen constant, in place 

TABLE VII. Pressure derivatives of polycrystalline elastic moduli 
at different thermodynamic boundary conditions ("-'3OO0 K). 

Pressure 
derivatives dK*/dp dC*/dp dL*/dp 

(aM'/aph 4. 14" 2.47' 7.43-
4.12b 

(aMT/aph 4.18 2.47 7.47 
4.oo(±0 .07)c 

(aM'/ap) , 4.10 2.41 7.32 

"Values taken from Table lI. 
b Value obtained from the Dugdale-MacDonald relation; Le .. 

[(aK'/al»TJ~_o -21'0+1. where 1'0 is the Grilneisen parameter. 
• Value obtained from the Murnaghan equation of state using experi· 

mental compression data. 
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of dc~./d p. In such a case, the calculation of the acoustic 
Grlineisen constant is simplified and easily tractable 
in the procedure; it gives "mean" Grlineisen's mode 
gammas (longitudinal and transverse). The detail of 
this subject will constitute a topic of a later publication. 

Another important use of the theoretical scheme is 
that, for anisotropic non cubic solids, the values of Ko· 
and [(dK·j dph]"..o calculated from single-crystal 
acoustic data should be used 'as the constants in the 
~furnaghan equation of state. Although a subsequent 
communication will discuss this subject in some detail, . 
it is noted here that the use of the usual Kn and its 
first pressure derivative at p=O as the Murnaghan 
constants is inaccurate procedure.20 

(d) In conclusion, the present work suggests an 
important implication that the acoustic data measured 
on fully dense polycrystalline specimens may be as 

20 (unpublished). 

useful as their single-crystal acoustic data in the study 
of the equation of state of solids, for example. And 
further, when anisotropic single. crystal acoustic data 
are available, these can be converted into isotropic 
polycrystalline acoustic data so that in their appli
cations the use of the acoustic data becomes more 
practical. 
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Temperature Effects on Several Fluorescence Pair Lines in Ruby 
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(Received 16 June 1967) 

The widths and positions of several lines in the fluorescence spectrum of ruby with 0.94 at.% Cr3+ belong
ing to the second (N,) and the fourth (N,) nearest neighbor pair systems have been measured between 
20° and 2700K. The linewidths are explained in terms of microscopic strains, Raman scattering of phonons, 
and direct phonon processes. The lineshifts with temperature are due to the absorption and emission of 
virtual phonons, and are approximately the same for all the lines investigated. A Debye model of phonons 
was used with different effective Debye temperatures for linewidth and lineshift processes. 

We have investigated the temperature dependence 
of the widths and positions of several lines in the 
fluorescence spectrum of ruby, with 0.94 at. % Cr3+, 
belonging to the second nearest neighbor (NI) and 
fourth nearest neighbor (N2) pair systemsI in order 
to compare the effects of strains and various ph on on 
processes on different transitions within the same pair 
system. These measurements were done in the tem
perature range from 20° to 2700K, and the results are 
compared with those obtained previously for different 
lines on the same sample.2 The lines investigated are 
due to the transitions shown in Fig. 1, and at 700K 

• Supported by U.S. Air Force undcr Contract AF33(615)
.198S. 

'P. Kisliuk, A. L. Schawlow, and M. D. Sturgc, in Qllantltm 
ElectrOllics, P. Grivet and n. lllocmbergen, Eds. (Columbia 
University Press, New York, 1964), Vol. I, p. 725. 

2 R. C. Powell, n. DiBartolo, B. llirang, and C. S. Naiman, J. 
Appl. Phys. 37, 4973 (1966). 

appear at 6948.6, 7058.2, 6987.7, 6989.4, and 7001.8~A.a 
The first two lines belong to the same pair system as 
the NI (7040.6-A) line, the latter three to the same 
pair systerri as the N2 (7008.8-A) line. 

The details of the experimental apparatus have been 
described in a previous paper.2 For these measurements 
a McPherson model 213 I-m monochromator was used 
in first order with a slit width of 20 iJ. to achieve a reso
lution of 0.60 cm-I. 

The experimental results and the theoretical fittings 
of the thermal variation of the fluorescence widths 
of the lines investigated are shown in Fig. 2. The 
curves for the linewidths are similar to each other 
and to those of the NI and N2 lines in that they are 
constant up to about 800 K and then increase rapidly 

3 R. C. Powell, n. DiBar~olo, B. llirang, and C. S. Naiman 
Phys. Rev. 155,296 (1967). 
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